Synthesis, Antibacterial, Anti-Inflammatory and Antiplatelet Activities of Some Trisubstituted Thiazoles

Musatakim Mansuri¹, Aejaz Ahmed²*, Arshad Shaikh², Navedul Haque³, Avinash K Sheth⁴, Khurshid I Molvi²

Abstracts: Sets of trisubstituted thiazoles (4a-4i) were synthesized by reaction of substituted N-(piperidinyl/ piperazinyl/N- methylpiperazinyl-4-thioyl) benzamide (3) with 3-(bromoacetyl) coumarin, respectively. The (3) were synthesized by nucleophilic addition of benzoyl isothiocyanate/ substituted benzoyl isothiocyanate and piperidine/ piperazine/4- methylpiperazine in equimolar quantity at reflux temperature. The synthesized compounds (4a-4i) were screened for their in vitro antibacterial activity against S. aureus, B. subtilis and E. coli using ciprofloxacin as standard drug. The targeted compounds (4a-4i) were evaluated for their in vivo anti-inflammatory activity in carrageenin-induced rat hind paw oedema model at three graded doses employed at 10, 20 and 40 mg/kg body weight using ibuprofen standard drug. Compounds (4a-4i) were also evaluated for ADP-induced platelet aggregation of platelet-rich plasma aspirin was used as positive control. Among all the targeted compounds 4h and 4i showed maximum antibacterial activity against all the three bacteria, while 4b showed maximum 89.6% antiplatelet activity. Compound 4c showed maximum anti-inflammatory activity of 33% protection at 10 mg/kg and 57% protection at 20 mg/kg to inflamed paw.

INTRODUCTION

Bacterial infections are associated with pain and inflammation. In general, chemotherapeutic, analgesic and anti-inflammatory agents are prescribed simultaneously for such condition. However, none of drug possesses these three activities in a single component. Multi-drug treatment of inflammatory conditions associated with microbial infections poses a unique problem especially for patients with impaired liver or kidney functions. Therefore from the pharmacoeconomic and patient compliance points of view, the monotherapy with a drug having both anti-inflammatory and antimicrobial activities is highly desirable [1]. Platelets are essential for normal haemostasis. Activation of the clotting cascade by trauma results in platelet activation, which is followed by aggregation. Platelet aggregation is an important pathogenic marker of inflammation. Hence, one rational approach in the research of anti-inflammatory drugs is to search for compounds causing inhibitions of platelet aggregation [2]. Coumarins with diverse structural features having versatile biological properties such as antibacterial, anti-cancer, anti-inflammatory and anti-HIV activities have been recently reviewed [3]. Coumarin, chrome and their derivatives are well documented as having in vitro inhibitory properties on human platelet aggregation in literature [4]. Thiazoles and their derivatives were found to be associated with various biological activities [5-7] such as antibacterial, antifungal, anti-inflammatory activities. Organic compounds bearing thiazoles of different pharmacodynamic nuclei such as 2,4-disubstituted thiazoles [8], imidazolyl thiazoles [9] and pyrazolyl thiazoles [10] have been recognized as potent anti-inflammatory and analgesic agents. Linkage of various heterocycles at C-4 position in 2-arylamino thiazoles has resulted in novel molecular matrices which were associated with anti-neoplastic activity [11]. Synthesis of many 3-substituted biheterocyclic coumarins with thiazoles and fused thiazoles possessing antimicrobial and anti-inflammatory agents has been reported [12-14]. Thiazole derivatives are also reported as antiplatelet agents [15], Husain A and coworker has reported anti-inflammatory and analgesic compound with antibacterial activity [16-18].

Earlier we have reported the designing and synthesis of new trisubstituted thiazoles containing coumarin with good antibacterial, anti-inflammatory and antiplatelet activity [19]. In continuation to our previous report, we report here synthesis of trisubstituted thiazoles containing coumarin in which replacement of morpholino moiety by piperidin and piperazine at second position of thiazole to observe the isosteric changes in pharmacological activity by replacing oxygen with carbon and nitrogen, and their in vitro antibacterial and antiplatelet activity as well as in vivo anti-inflammatory activity of a new series of designed trisubstituted thiazoles molecules (Scheme 1).

MATERIALS AND METHODS

Chemistry

All reagents and solvents were used as obtained from the supplier or recrystallized/ redistilled as necessary. Thin layer chromatography was performed on microscopical slides coated with silica gel G and and toluene : acetonitrile as a mobile phase. The spots were visualized by normal TLC and exposure to iodine vapour. Melting points were recorded on open capillary melting point apparatus and were uncorrected. IR spectra were recorded in KBr on SHIMADZU Fourier Transform Infrared 8400 S spectrophotometer. Mass spectra were recorded on Electron impact (EI) on a Jeol JMS-D-300 spectrometer with the ionization potential of 70 eV. Nuclear Magnetic Resonance spectra (1H NMR) were recorded in DMSO-d6 on Bruker advance at 400 MHz using Tetramethyl silane (TMS) as internal standard and the chemical shift (δ) were observed the isosteric changes in pharmacological activity.

¹K. B. Institute of Pharmaceutical Education and Research, Department of Pharmaceutical Chemistry, Gandhinagar, Gujarat, India
²Ali-Allana College of Pharmacy, Department of Pharmaceutical Chemistry, Akkalkuwa, Nandurbar-425415 (M.S.) India. E-mail: aejazboraji@rediffmail.com
³University Department of Chemistry, B. R. A. Bihar University, Muzaффarpur, Bihar, India.
⁴Department of Pharmacy, Sumandeep Vidyapeeth, Pipariya, Vadodara, Gujarat, India.
reported in parts per million (ppm). Elemental analysis data were determined using a Carlo-Erba 1108 instrument or Elementar’s Vario EL III micro-analyzer.

General Method for Synthesis Of Compounds (4a)–(4i)

As shown in Scheme 1, isothiocyanate (2) were obtained by stirring ammonium thiocyanate (0.1379 mol) in 100 mL acetone at room temperature with benzoyl chloride/substituted benzoyl chloride (0.1263 mol) for 15-25 minutes followed by refluxing the reaction mixture for 15 min. Substituted N-(piperidinyl/piperazinyl/N-methylpiperazinyl-4-thioyl) benzamide (3) were synthesized by nucleophilic addition of benzoyl isothiocyanate /substituted benzyol isothiocyanate and piperidine/piperazine/4-methylpiperazine in equimolar quantity at reflux temperature. The compounds (4a)–(4i) were synthesized as per procedure reported by Reji et al [20]. In brief the 3-bromoacetyl coumarin (0.005 mmol) was added to a solution of the adduct (3) (0.005 mmol) in 5 mL dimethyl formamide (DMF). The reaction mixture was heated on a water bath at 80-85°C for 5 min. To this, triethylamine 0.3 mL (0.005 mmol) was added and heating was continued for another 15 min. The reaction mixture was cool and poured into ice-cold water with stirring. A yellow precipitate thus obtained were filtered, wash with water and air-dried, purified by preparative TLC (3:7
Hexane: Ethyl acetate) corresponding to the (4a-4i) and was characterized as per the analytical data.

Sheme 1: Synthesis of 3-(4(substituted)phenyl-2-piperidine-piperine-1-y1-4-thiazole-5-carbonyl)-1-chromen-2-0ne. Reagent and condition: a) NH4SCN acetone, reflux 15-25 min; b) reflux for 15 min, pour reaction mixture to crushed ice; c) dimethyl amide, stire at 70 °c to 80 °c for 2 hours, pour to crushed ice.
7.9 (s, 1H, aromatic proton at 5th position of coumarin), 10.2 (s, 1H, NH piperazine); MS: m/z 451 (M+), 452 (M+1), 453 (M+2); Anal. calc. for C_{23}H_{18}ClN_{3}O_{3}S: C, 61.13; H, 4.02; N, 9.30; Found: C, 61.38; H, 4.46; N, 9.44%.

3-[4-(3-Chloro-phenyl)-2-piperazin-1-yl-thiazole-5-carbonyl]-chromen-2-one (4g). Yield: 56%; m.p.: 120°C; Rf 0.97 (3:7, hexane/ethyl acetate); IR (KBr, cm⁻¹): 3032 (-CH₂ stretching-piperazine ring), 1730 (strong band of -C=O stretching), 1456-1533 (C=C stretching, aromatic), 1374 (C-N) 1243, (C-C[=O]-O symmetric stretching); ¹H NMR: (400 MHz, DMSO) δ (ppm): 2.4-3.7 (m, 8H, piperazine), 6.9-7.2 (m, 4H, aromatic proton at 5th position of coumarin), 7.1-7.5 (m, 4H, aromatic proton at 4th position), 7.8 (s, 1H, aromatic proton at 5th position of coumarin), 8.9 (s, 1H, NH piperazine); MS: m/z 452 (M+), 453 (M+1), 454 (M+2); Anal. calc. for C_{23}H_{18}ClN_{3}O_{3}S: C, 61.13; H, 4.02; N, 9.30; Found: C, 61.23; H, 4.17; N, 9.56%.

3-[4-(4-Chloro-phenyl)-2-piperazin-1-yl-thiazole-5-carbonyl]-chromen-2-one (4h). Yield: 47%; m.p.: 124°C; Rf 0.93 (3:7, hexane/ethyl acetate); IR (KBr, cm⁻¹): 3040 (-CH₂ stretching-piperazine ring), 1700 (strong band of -C=O stretching), 1450-1530 (C=C stretching, aromatic), 1370 (C-N), 1241 (C-C[=O]-O symmetric stretching); ¹H NMR: (400 MHz, DMSO) δ (ppm): 2.3 (s, 3H, CH₃ of piperazine), 2.50-2.55 (t, 2H, aromatic proton at 4th position), 6.9-7.1 (m, 4H, aromatic proton at 5th position of coumarin), 7.25 (d, 2H, aromatic proton at 2nd and 6th position of aromatic phenyl ring), 7.5 (d, 2H, aromatic proton at 3rd and 5th position of aromatic phenyl ring), 7.9 (s, 1H, aromatic proton at 5th position of coumarin), 10.0 (s, 1H, NH piperazine); MS: m/z 452 (M+), 453 (M+1), 454 (M+3); Anal. calc. for C_{23}H_{18}ClN_{3}O_{3}S: C, 61.13; H, 4.02; N, 9.30; Found: C, 61.22; H, 4.29; N, 9.68%.

3-[2-(4-Methylpiperazin-1-yl)-4-phenyl-1-yl-thiazole-5-carbonyl]-chromen-2-one (4i). Yield: 35%; m.p.: 128°C; Rf 0.98 (3:7, hexane/ethyl acetate); IR (KBr, cm⁻¹): 3100-3000 (-CH₂ stretching-), 1710 (strong band of -C=O stretching), 1457-1533 (C=C stretching, aromatic), 1374 (C-N), 1248 (C-C[=O]-O symmetric stretching); ¹H NMR: (400 MHz, DMSO) δ (ppm): 2.4-3.7 (m, 8H, piperazine), 6.8-7.1 (m, 4H, aromatic proton at 5th position of coumarin), 9.9 (s, 1H, NH piperazine); MS: m/z 452 (M+), 453 (M+1), 454 (M+2); Anal. calc. for C_{23}H_{18}ClN_{3}O_{3}S: C, 61.13; H, 4.02; N, 9.30; Found: C, 61.38; H, 4.46; N, 9.44%.

Pharmacological Screening

Animals. Albino rats (150 - 250 g) of either sex were provided with pellet diet (Lipton, India) and water ad libitum and kept under standard laboratory conditions at 25 ± 2°C. The experimental protocol was approved by the institutional ethics committee constituted by the Ministry of Social Justice and Empowerment, (Government of India).

Antibacterial Activity

The newly synthesized compounds were screened for their antibacterial activity using agar well diffusion method [21], the antibacterial activity of the test compounds were evaluated against Gram-positive bacteria, *Staphylococcus aureus*, *Bacillus subtilis* and Gram-negative bacteria *Escherichia coli* using ciprofloxacin as standard drug. The solution of the synthesized compounds in dimethylsulfoxide (DMSO) was prepared and used as solvent control. The microorganism was activated by inoculation a loopful of the strain in the nutrient broth (25 mL) and incubating at room temperature in a rotary shaker. The test organism (0.2 mL; 10⁶ cells/ as per McFarland standard) was then inoculated into the molten Mueller Hinton agar media. After proper homogenization it was poured into sterile 100 mm petri dishes (Hi-media) and allowed to solidify. A well was made in the seeded plates with the help of a sterile cork borer (8.5 mm). The test solution (0.05 mL) in DMSO was introduced into the well and all the plates were incubated at 37°C for 24 hours. The experiment was performed in triplicate under aseptic conditions. The control was also maintained with 0.05 mL of DMSO under similar conditions and the zone of inhibition of the bacterial growth were measured and recorded. Preliminary screening was conducted for all compounds at 100 μg/mL concentration, against the above mentioned microorganisms. Different series of dilutions of compounds were made (1.56 to 75 μg/mL) to determine the MIC.

Anti-inflammatory Activity

We have used the method previously described by Winter et al [22]. The animals were studied for toxicity of DMSO up to 10% v/v in saline, and 5% DMSO was selected as a vehicle to suspend the standard drugs and the test compounds. Albino rats of either sex weighing between 150 - 250 g were starved for 18 hours prior to the experiment. The animals were weighed, marked for identification and divided into groups of six. The standard drug, ibuprofen (20 mg/kg body weight) and mefanamic acid (100 mg/kg body weight) and the test compounds were given orally (10, 20 and 40 mg/kg body weight) as a suspension using 5% DMSO as a vehicle. One hour later foot paw oedema was induced by injecting 0.1 mL of 1% carrageenan subcutaneously into the planter portion of the right hind paw of each rat. Initial foot paw volume was measured immediately by mercury plethysmometer. Oedema was measured three hours after carrageenan administration. The swelling in test group animals was used to calculate the percent inhibition ± SEM of oedema achieved by the compound at the test dose compared with the vehicle control group. The % protection of oedema was calculated according to the formula, % anti-inflammatory activity = 100 x (Vt/Vc) where, Vt and Vc were the volume of oedema in test compounds and control groups, respectively.

Anti-platelet Activity

ADP-induced platelet aggregation of platelet-rich plasma (PRP) quantitated using optical density filter at 405 nm as a measurement point in kinetic mode. To obtain PRP, a citrated tube of blood was inverted 3 to 5 times for gentle
mixing and centrifuged at room temperature for 10 min at 200 g. After centrifugation, the upper turbid layer of PRP was removed, and the residual blood was centrifuged for 5 min at 2000 g to obtain platelet-poor plasma (PPP). The PPP was used as the baseline optical density for platelet aggregation. A total of 180 μL of PRP containing about 3 x 10⁸ platelets/mL was incubated at 37°C in the 96 well plates for 3-5 min. Then 10 μL of test compounds were added in PRP containing wells and incubated for the period of 15 minutes with intermittent shaking. ADP (10 μL) at a final concentration of 10, 20 and 40 μmol/L was added in above wells with intermittent shaking mode. Optical density readings were measured at every 1 minute with intermittent shaking up to 5 minutes. Platelet aggregation was expressed as the change in optical density at 5 minutes, compared with PPP as a reference and converted to % aggregation [23]. Aspirin was used as a positive control.

RESULT AND DISCUSSION

Some novel trisubstituted thiazole analogues (4a-4i) were designed and synthesized. The chemical structures of these compounds are shown in Table 1. The synthesized compounds (4a-4i) were evaluated for their in vitro antibacterial, in vivo anti-inflammatory and in vitro anti-platelet activities. The in vitro antibacterial activity evaluated against Gram-positive bacteria, Staphylococcus aureus, Bacillus subtilis and Gram-negative bacteria Escherichia coli using ciprofloxacin as standard drug, in vivo anti-inflammatory activity was performed in carrageenin-induced rat hind paw oedema model at three graded doses employed at 10, 20 and 40 mg/kg body weight using mefanamic acid and ibuprofen as standard drug and similarly in vitro anti-platelet activity was performed in ADP-induced platelet aggregation of PRP, quantitated using optical density filter at 405 nm as a measurement point in kinetic mode using aspirin as a positive control and the results are shown in Table 2. Taking into account the diverse biological activities of coumarin derivatives namely anti-inflammatory activities and in vitro inhibitory properties on human platelet aggregation reported in literature and similarly thiazole derivatives which are also extensively reported and clinically used as antimicrobial agents. The compounds 4a-4d were designed and synthesized by keeping coumarin-3-yl at fifth position and piperidinyl/piperazinyl moiety at second position of thiazole ring. The forth position of thiazole was substituted by introducing electron withdrawing group (–Cl), at different position in phenyl moiety. The compound 4i was synthesized having methyl group at fourth position of piperazinyl to explore the effect of presence of aliphatic chain on biological activity of profile of the candidate.

Among all the tested compounds 4a-4i, the 4h and 4i displayed a good antibacterial activity against all the Gram-positive and Gram-negative bacteria, and their activities were found to be better than that of 4a-4f however all the synthesized compounds displayed weaker antibacterial activities compared to those of the standard drug ciprofloxacin. The compound 4i displayed antibacterial activity against E. coli (7.25 MIC in μg/mL; 16 mm zone of inhibition), S. Aureus (7.25 MIC in μg/mL; 16 mm zone of inhibition) and B. Subtilis (8.25 MIC in μg/mL; 15 mm zone of inhibition), where as compound 4h displayed E. coli (7.50 MIC in μg/mL; 16 mm zone of inhibition), S. Aureus (8.50 MIC in μg/mL; 15 mm zone of inhibition) and B. Subtilis (9.25 MIC in μg/mL; 14 mm zone of inhibition). In the series, 4b showed comparable anti-inflammatory activity at all the three graded doses employed, i.e. 30% at 10 mg/kg, 55% at 20 mg/kg and 48% at 40 mg/kg, for 4c the % protection was found to be 33% at 10 mg/kg, 57% at 20 mg/kg and 52% at 40 mg/kg, similarly for 4d the % protection was displayed 32% at 10 mg/kg, 55% at 20 mg/kg and 55% at 40 mg/kg. Compounds 4a and 4e-4i showed moderate to less activity as compared to above three compounds. All the targeted trisubstituted thiazole (4a-4i) were found to have poor anti-inflammatory activity as compared to the standard drug ibuprofen, which showed 75% protection at 20 mg/kg dose. The targeted compounds (4a-4i) were also evaluated for ADP-induced platelet aggregation of platelet-rich plasma (PRP) using aspirin as a positive control. The compounds 4b and 4c also showed maximum antiplatelet activity of 89.60% and 75.36% respectively; however 4a and 4d-4i showed moderate to less antiplatelet activity as compared to above compounds. To summarize these findings, methyl substituent on piperazino moiety and p-chlorophenyl at second and forth position of thiazole respectively enhances antibacterial activity against all tested Gram-positive and Gram-negative bacteria. The presence of piperidino moiety and chlorophenyl at second and forth position of thiazole respectively enhances the anti-inflammatory activity and antiplatelet activity. However all targeted trisubstituted thiazole containing coumarin (4a-4i) were found to have moderate to poor antibacterial, anti-inflammatory and antiplatelet activities, it is, therefore, suggested that this scheme to be studied further to explore its full structure-activity relationship potential particularly single candidate as monotherapy in the treatment of chronic inflammatory diseases having both anti-inflammatory and antimicrobial activities.

CONCLUSIONS

The synthesized compounds (4a-4i) were evaluated for their in vitro antibacterial activity; in vivo anti-inflammatory activity and in vitro antiplatelet activity. The compounds 4a-4d were designed and synthesized by keeping coumarin-3-yl at fifth position and piperidinyl/piperazinyl moiety at second position of thiazole ring. The forth position of thiazole was substituted by introducing electron withdrawing group (–Cl), at different position in phenyl moiety. The Compounds 4h and 4i displayed a good antibacterial, 4c showed maximum in vivo anti-inflammatory activity and 4b found to have highest antiplatelet activity. To summarize these findings, the methyl substituent on piperazino moiety and p-chlorophenyl at second and forth position of thiazole respectively enhances antibacterial activity against all tested organism. The presence of piperidino moiety and...
chlorophenyl at second and forth position of thiazole respectively enhances the anti-inflammatory activity and antiplatelet activity. However all targeted trisubstituted thiazole containing coumarin (4a-4i) were found to have moderate to poor antibacterial, anti-inflammatory and antiplatelet activities, it is, therefore, suggested that this scheme to be studied further to explore its full structure-activity relationship potential particularly single candidate as monotherapy in the treatment of chronic inflammatory diseases having both anti-inflammatory and antimicrobial activities.

REFERENCES AND NOTES

Acknowledgments

The authors are thankful to president JIIU’s G.M.Vastnavi and Dr. V. Sudarsanam for their encouragement and support. We also wish to thanks to Mr. Prashant Patel director, Cambay Organics Pvt. Cambay, Gujarat, India to provide chemicals and Dr. Anita Mehta, Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, for screening of antiplatelet activity.